site site site my site my site my site
+61 8 8150 5200

Australia • New Zealand

Coherent Axon Compact Femtosecond Laser

Home News Coherent Axon Compact Femtosecond Laser
Coherent Axon Compact Femtosecond Laser
15 Jul

Coherent Axon Compact Femtosecond Laser

Coherent has introduced the Axon family, a completely new suite of compact femotsecond lasers, designed from inception to deliver lower cost, reduced complexity and smaller footprint. Axon addresses demanding applications such as multiphoton microscopy (MPE), nanoprocessing, semiconductor metrology and THz spectroscopy. Axon is a fixed wavelength, compact (212mm x 312mm x 62mm), air-cooled laser. The first two models have output wavelengths of 920nm and 1064nm, with other wavelength versions expected soon. All Axon lasers feature the same form, fit and function, including 1W of average power with integrated, software-controlled GVD pre-compensation. To further simplify adaption of this laser, its output matches the existing femtosecond laser oscillators: short (<150fs) pulse width, a clean temporal profile and 80MHz pule repetition rate.

A major application of the Axon lasers is multiphoton microscopy. The 920nm laser is designed for GFP and related imaging probes, and Ca2+ indicators such as GCAMP. The 1064nm version matches well with red shifted Ca2+ indicators and red fluorescent proteins. Although MPE delivers inherent 3D images, deep penetration and high cell viablity, market adoption lags well behind confocal microscopy because the cost and size of available femtosecond lasers and the challenges of integrating them with a microscope. The combination of the optional integrated fast modulation and small laser head allows for direct attachment of Axon to a microscope scan head, potentially negating the need for an optical table.

Other applications for Axon include two-photon polymerisation, material nanoprocessing and semicondcutor and thin film metrology. The 1064nm model is also an excellent tool for supercontinuum generation thanks to its high fidelity femtosecond pulse quality.

For further information please contact us or read more.