WPI Micro-ePORE Cell Penetrator
WPI Micro-ePORE Cell Penetrator
For targeted microinjection and increased viability of injected embryos
The new WPI MICRO-ePORE™ pinpoint cell penetrator is a simple and versatile system that can be used for efficient microinjection of a diverse array of compounds and biomolecules into oocytes and pre-implantation stage mammalian embryos. Patent pending Flutter Electrode Technology assists in small, clean, precise membrane penetration without tearing or damaging the membrane.
Features:
- Touch-screen display-resistive touch panel for use with gloves
- Injection control through foot switch or manually through touch screen
- Intuitive user-interface
- User adjustable frequency and voltage through touch screen
- Small footprint
- Four user-programmable protocols
- Adjustable audio continuity tone indicating active probe Injection counter to indicate total number of injections
The new MICRO-ePORE™ pinpoint cell penetrator offers a unique solution for microinjection resulting in high viability. The instrument creates an oscillating electric field at a localised site on the membrane immediately beneath the site of injection. The MICRO-ePORE™ creates small, reversible holes in the plasma membrane through which material is microinjected. The researcher determines the amplitude and frequency of the signal that best suits the application. In contrast to conventional microinjection, in targeted microinjection using the MICRO-ePORE™, the membrane does not tear and thus allows for superior viability of embryos. The technique is simple and elegant. The new MICRO-ePORE™ cell penetrator prototype has been successfully tested in mouse and primate pre-implantation embryos, as well as gene silencing in zebrafish tails.
MICRO-ePORE™ was designed for a range of applications including generation of CRISPR/Cas9 mediated knock-in mice with large insertions by microinjection into two-cell stage embryos with high viability. The MICRO-ePORE™ has delivered accurate microinjection of morpholino oligomers (anti-sense "knockdown") in zebrafish tails.
For further information please contact us or download the datasheet.